
Getting started with R, Essentials of the R language

Dhafer Malouche

Outline

Downloading and Installing R and RStudio

R objects

Importing/Exporting Data

2 of 51

Downloading and Installing R and
RStudio

R and RStudio

▶ Downloading R:
https://cran.r-project.org/bin/windows/base/

▶ Downloading RStudio:
https://www.rstudio.com/products/rstudio/download/.
Click on “free version”.

4 of 51

https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/

R for Windows users

5 of 51

R for Mac users

6 of 51

R for Mac users

6 of 51

R installation

7 of 51

R objects

R as calculator

▶ One of the simplest possible tasks in R is to enter an arithmetic
expression and receive a result. (The second line is the answer
from the machine.)
> 2 + 2
[1] 4
> exp(-2)
[1] 0.1353353

▶ Generating 4 random numbers from a normal distribution
> rnorm(4)
[1] 1.3507720 1.0938817 -0.5241599 -0.6047982

9 of 51

Assignments

> x<-2
> x
[1] 2
> x<-A
Error: object ’A’ not found
> x<-’A’
> x
[1] "A"

10 of 51

Vectors

Vector Objects

▶ The construct c(...) is used to define vectors
> weight <- c(60, 72, 57, 90, 95, 72)
> weight
[1] 60 72 57 90 95 72

▶ You can do calculations with vectors as long as they are of the
same length:
> height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91)
> bmi <- weight/heightˆ2
> bmi
[1] 19.59184 22.22222 20.93664 24.93075 31.37799
[2] 19.73630

12 of 51

Vector Objects

▶ Computing the mean
> sum(weight)
[1] 446
> sum(weight)/length(weight)
[1] 74.33333

13 of 51

Vector Objects

▶ Computing the Standard deviation
> xbar <- sum(weight)/length(weight)
> weight - xbar
[1] -14.333333 -2.333333 -17.333333 15.666667 20.666667
[6] -2.333333
> (weight - xbar)ˆ2
[1] 205.444444 5.444444 300.444444 245.444444 427.111111
[6] 5.444444
> sum((weight - xbar)ˆ2)
[1] 1189.333
> sqrt(sum((weight - xbar)ˆ2)/(length(weight) - 1))
[1] 15.42293

14 of 51

Vector Objects

▶ Using mean and sd functions
> mean(weight)
[1] 74.33333
> sd(weight)
[1] 15.42293

15 of 51

Vector Objects

▶ A character vector is a vector of text strings
> c("Huey","Dewey","Louie")
[1] "Huey" "Dewey" "Louie"
> c(0,2,3,"A")
[1] "0" "2" "3" "A"

▶ A logical vector
> c(T,T,F,T)
[1] TRUE TRUE FALSE TRUE
> c(T,F,0,T)
[1] 1 0 0 1
> c(T,F,"A")
[1] "TRUE" "FALSE" "A"

16 of 51

Manipulating Vectors

▶ Concatenate vectors
> x <- c(1, 2, 3)
> y <- c(10, 20)
> c(x, y, 5)
[1] 1 2 3 10 20 5

▶ Assign names to the elements
> x <- c(red="Huey", blue="Dewey", green="Louie")
> x

red blue green
"Huey" "Dewey" "Louie"

17 of 51

Creating Vectors

▶ Creating a sequence of numbers from 4 to 9
> seq(4,9)
[1] 4 5 6 7 8 9
> 4:9
[1] 4 5 6 7 8 9

▶ Creating a sequence of numbers from 4 to 9 with jumps of 2
> seq(4,10,2)
[1] 4 6 8 10

▶ Repeating a vector
> oops <- c(7,9,13)
> rep(oops,3)
[1] 7 9 13 7 9 13 7 9 13
rep(1:2,c(2,4))

[1] 1 1 2 2 2 2
18 of 51

Built-in Functions

Built-in Functions

All the mathematical functions are here in R
▶ log function

> log(10)
[1] 2.302585

▶ log to the base 10
> log10(6)
[1] 0.7781513
> log(6)/log(10)
[1] 0.7781513

▶ log to the base 3
> log(10,3)
[1] 2.095903
> log(10)/log(3)
[1] 2.095903

20 of 51

Built-in Functions

21 of 51

Numbers

Numbers with Exponents

For very big numbers or very small numbers R uses the following
scheme:

▶ 1.2e3 means 1200 because the e3 means ‘move the decimal point
3 places to the right’

▶ 1.2e-2 means 0.012 because the e-2 means ‘move the decimal
point 2 places to the left’

▶ 3.9+4.5i is a complex number with real (3.9) and imaginary
(4.5) parts, and i is the square root of 1.

23 of 51

Modulo and Integer Quotients

▶ Suppose we want to know the integer part of a division: say, how
many 13s are there in 119 (quotient):
> 119 %/% 13
[1] 9

▶ Now suppose we wanted to know the remainder (what is left over
when 119 is divided by 13): in maths this is known as modulo:
> 119%%13
[1] 2

▶ Question: How can we test whether a number is odd or even?

24 of 51

Rounding

▶ The ‘greatest integer less than’ function is floor

> floor(5.7)
[1] 5

▶ The ‘next integer’ function is ceiling

> ceiling(5.7)
[1] 6

▶ Rounding to the closest number with a given number of decimals
> round(5.75,21)
[1] 5.8

25 of 51

Infinity, Missing values, and
others

Infinity

> 3/0
[1] Inf
> -5/0
[1] -Inf
> exp(-Inf)
[1] 0
> log(Inf)
[1] Inf
> (0:3)
[1] 0 1 2 3
> (0:3)ˆInf
[1] 0 1 Inf Inf
> is.infinite(4)
[1] FALSE
> is.infinite(Inf)
[1] TRUE

27 of 51

Missing values

> x<-c(1:5,NA)
> is.na(x)
[1] FALSE FALSE FALSE FALSE FALSE TRUE
> x
[1] 1 2 3 4 5 NA
> mean(x)
[1] NA
> mean(x,na.rm = T)
[1] 3
> ifelse(is.na(x),0,x)
[1] 1 2 3 4 5 0
> which(is.na(x))
[1] 6

28 of 51

Min, Max, pmax, pmin

> x=sample(1:10,3)
> x
[1] 1 7 6
> y=sample(1:10,3)
> y
[1] 8 10 5
> max(x)
[1] 7
> min(y)
[1] 5
> pmax(x,y)
[1] 8 10 6
> pmin(x,y)
[1] 1 7 5

29 of 51

Matrices

Matrices

▶ A matrix in mathematics is just a two-dimensional array of numbers
> x <- 1:12
> dim(x) <- c(3,4)

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

▶ Or
> matrix(1:12,nrow=3,byrow=T)

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

31 of 51

Matrices

▶ Give names to the rows
> x <- matrix(1:12,nrow=3,byrow=T)
> rownames(x) <- LETTERS[1:3]
> x

[,1] [,2] [,3] [,4]
A 1 2 3 4
B 5 6 7 8
C 9 10 11 12

▶ Transpose
> t(x)

A B C
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

32 of 51

Matrices

> x <- matrix(1:12,nrow=3,byrow=T)
> class(x)
[1] "matrix" "array"
> attributes(x)
$dim
[1] 3 4
> dim(x)
[1] 3 4
> is.matrix(x)
[1] TRUE
> x[,2]
[1] 2 6 10
> x[1,]
[1] 1 2 3 4
> x[2,2]
[1] 6

33 of 51

Matrices: functions

> colSums(x)
[1] 15 18 21 24
> rowMeans(x)
[1] 2.5 6.5 10.5
> apply(x,2,mean)
[1] 5 6 7 8
> apply(x,1,function(z) sum(zˆ2))
[1] 30 174 446

34 of 51

Matrices: adding rows and columns

> y=matrix(1:6,ncol=2)
> y

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> cbind(x,y)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 4 1 4
[2,] 5 6 7 8 2 5
[3,] 9 10 11 12 3 6

35 of 51

Arrays

> array<-1:25
> is.matrix(array)
[1] FALSE
> dim(array)<-5,5
Error: unexpected ’,’ in "dim(array)<-5,"
> dim(array)<-c(5,5)
> array

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25
> is.matrix(array)
[1] TRUE

36 of 51

Arrays

Arrays

A<-letters[1:24]
> dim(A)<-c(4,2,3)
> A
, , 1

[,1] [,2]
[1,] "a" "e"
[2,] "b" "f"
[3,] "c" "g"
[4,] "d" "h"
.... Truncated output
> A[1,2,2]
[1] "m"
> A[1,2,]
[1] "e" "m" "u"
> A[,2,]

[,1] [,2] [,3]
[1,] "e" "m" "u"
[2,] "f" "n" "v"
[3,] "g" "o" "w"
[4,] "h" "p" "x" 38 of 51

Boolean objects

Boolean objects and logic instructions Logic

▶ Logic operations: <, >, <=, >=, != [different], == [equal] return
TRUE or FALSE

▶ The comparison between 2 vectors is done term by term

▶ If vectors do not have the same length, the shortest is completed
automatically.

> a = 1:5; b = 2.5
> a<b
[1] TRUE TRUE FALSE FALSE FALSE

40 of 51

Boolean objects and logic instructions Logic

▶ Extract elements in a vector according to specific condition
> a[a>3]
[1] 4 5
> a<-1:10
> a[a<=4 | a>=8]
[1] 1 2 3 4 8 9 10
> a[a<=4 & a>=8]
integer(0)
> a[a>4 & a<=8]
[1] 5 6 7 8

41 of 51

List

Definition

▶ A list is a structure containing objects (not necessarily of same
type). A list is created using the function list

▶ Example: A list named rnd contining 3 objects
▶ a vector in a vector called serie

▶ a scalar in a variable called length

▶ a sequence of characters in a variable called type

▶ The code
> rnd = list(serie=c(1:100), length = 100, type=’arithm’)

▶ Remark: A list might be created without giving a name to variables
> rnd = list(c(1:100), 100, "arithm")

43 of 51

Operations on lists

▶ To display the list of elements in a list
> names(rnd)
[1] "serie" "length" "type"

▶ length of a list
> length(rnd)
[1] 3

▶ Summary of a list
> summary(rnd)

Length Class Mode
serie 100 -none- numeric
length 1 -none- numeric
type 1 -none- character

44 of 51

Operations on lists

▶ To extract an elements in a list
[1] 100
> rnd[[2]]
[1] 100
> rnd[2:3]
$length
[1] 100

$type
[1] "arithm"

45 of 51

Dataframes

Definition

▶ A dataframe is a matrix where columns are not necessarily of a
same type: scalar, boolean, character. But the elements in the
same column should be with the same type.

▶ Example:
> data1 = data.frame(x1=1,x2=1:5, letter=letters[1:5])
> data1

x1 x2 letter
1 1 1 a
2 1 2 b
3 1 3 c
4 1 4 d
5 1 5 e

47 of 51

Operations on dataframes

▶ First rows
> head(data1,2)

x1 x2 letter
1 1 1 a
2 1 2 b

▶ Last rows
> tail(data1,2)

x1 x2 letter
4 1 4 d
5 1 5 e

▶ Number of rows and columns
> dim(data1)
[1] 5 3

48 of 51

Importing/Exporting Data

Import interactively using RStudio

50 of 51

Types of data files

▶ For .txt file use From Text (base)...

▶ For .csv file use From Text (readr)...

▶ For .xls and xlxs files use From Excel...

▶ For spss files use From SPSS...

51 of 51

	Downloading and Installing R and RStudio
	R objects
	Importing/Exporting Data

